Stacked Cross Attention for Image-Text Matching

نویسندگان

  • Kuang-Huei Lee
  • Xi Chen
  • Gang Hua
  • Houdong Hu
  • Xiaodong He
چکیده

In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuffs (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior works either simply aggregate the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or use a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in sentence as context and infer the image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% in text retrieval from image query, and 18.2% in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% and image retrieval by 16.6% (based on Recall@1 using the 5K test set).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stacked Graphical Model for Associating Information from Text and Images in Figures

There is extensive interest in mining data from full text. We have built a system called SLIF (for Subcellular Location Image Finder), which extracts information on one particular aspect of biology from a combination of text and images in journal articles. Associating the information from the text and image requires matching sub-figures with the sentences in the text. We introduced a stacked gr...

متن کامل

A Stacked Graphical Model for Associating Sub-Images with Sub-Captions

There is extensive interest in mining data from full text. We have built a system called SLIF (for Subcellular Location Image Finder), which extracts information on one particular aspect of biology from a combination of text and images in journal articles. Associating the information from the text and image requires matching sub-figures with the sentences in the text. We introduce a stacked gra...

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

Image retrieval using the combination of text-based and content-based algorithms

Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...

متن کامل

Parallel string matching for image matching with prime method

String matching play the much more attention in the recent days because of its importance in several areas like retrieval of large text data, image data , mining etc.,. For this purpose, several researchers proposed solution to these problems, but still there is a scope to develop new techniques, especially in image matching. For this purpose, in his paper, we have proposed a method for image s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018